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Transport of liquid water in a fuel cell gas diffusion layer is analyzed using capillary network modeling
in which the mobility of both liquid and gas phases is considered to examine two distinct multiphase
flow regimes: displacement and co-current flows. The simulations utilize a modified invasion percolation
with trapping algorithm, and the capillary network consists of throats of different radii to account for
the local heterogeneities of the porous media. Both displacement and two-mobile phase flow are solved,
with inlet boundary condition for two-mobile phase flow prescribed through a discrete sequence of alter-
nating phases entering the network. For both flow types (displacement and two-mobile phase), the cases
studied range from capillary force controlled, where the maximum distance between two throats filled
consecutively is equal to the network size, to viscous force controlled, where the maximum distance
elative permeability
apillary function
EM fuel cell

is set so as not to exceed some predefined value that is less than the network size. The maximum dis-
tance determines the distribution of phases; phase entrapment, percolation, and channeling are observed
during the spread of phases for distinct flow conditions. Once a distribution of phases is obtained, we cal-
culate saturation, relative permeabilities, and the capillary pressure at the interface between the phases;
we also determine the dependence of these transport parameters on medium heterogeneity and cluster
size. Finally, the changes of relative permeability and capillary pressure as a function of saturation are

nt an
compared for displaceme

. Introduction

Water plays a critical role in the operation of PEM fuel cells. In
rder to achieve models that are physically representative of the
ultiphase flow nature of water transport in gas diffusion layers

GDLs), two issues need to be resolved. The first is understanding
f the water flow mechanisms, when liquid water displaces the
as phase, or when gas and liquid phase flow co-currently through
he GDL. The second is the prediction of the multiphase transport
arameters for a given flow mechanism. Two additional transport
rocesses need to be kept in mind: water evaporation and capil-

ary flow, which can greatly influence the liquid water flow pattern
1,2]. MRI experimental results [3] for sessile droplets show that
he evolution of imbibed liquids can differ significantly depending
n the relative magnitude of evaporation and capillary flow rates.

Once the water transport mechanism is defined, the liquid water

istribution can be obtained by solving the multiphase conser-
ation equations [4,5]. It is generally accepted that the capillary
ressure can be expressed using the Leverett J-function [6,7] and
he relative permeability changes as a power law of the saturation

∗ Corresponding author. Tel.: +1 250 721 6034; fax: +1 250 721 6323.
E-mail address: ndjilali@uvic.ca (N. Djilali).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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d two-mobile phase flow.
© 2010 Elsevier B.V. All rights reserved.

[8,9], and this is the basis of most macroscopic fuel cell models
accounting for liquid water transport in the GDL. Although the
definitive form of relations specifically applicable to the fibrous
hydrophobic GDL media remains to be established, some notable
progress in this direction has been made recently [10,11]. The
parameters that influence the relative permeability power law are
discussed and summarized by Valavanides and Payatakes [12],
where the value of the exponent changes due to the difference
in length scales of the porous medium and distributed phase(s)
[13,14] that may be caused by medium structure or process dynam-
ics [15].

The dependencies between different scales can be elucidated by
using capillary network models [16] in which the porous medium
is represented as a network of pores and throats. Three different
forces – capillary, viscous and gravitational – govern the multiphase
flow [17,18], and their relative influence on the multiphase flow is
quantified by the capillary and Bond numbers. For very slow flow
(small capillary number) and negligible gravity, the flow is dom-
inated by capillary forces [19]. It has been shown [20] that slow,

non-wetting liquid displacement flows follow the invasion perco-
lation process. This percolation problem has been formulated by
Wilkinson and Willemsen [21], whereby the interface advances at
each discrete step only at one point in which the potential thresh-
old is satisfied. For a wetting liquid, or higher capillary numbers,

dx.doi.org/10.1016/j.jpowsour.2010.11.008
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:ndjilali@uvic.ca
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Fig. 1. Network model of a porous medium consisting of pores and throats. The
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ynamic schemes [22] need to be used. In this case, for one discrete
tep, more than one point at the interface can satisfy the poten-
ial threshold, and each pore can be filled/emptied more than once
uring the flow process.

The fuel cell gas diffusion layer is an inherently heterogeneous
brous porous medium [10] in which liquid water is distributed
o form percolating flow paths. Using the percolation algorithm, a
etwork structure which represents a GDL can be defined to match
xperimental capillary pressure curves of some actual GDLs [23].
he changes of the relative permeability and capillary pressure in
he limit of capillary flow as predicted from the invasion percola-
ion are reported by Markicevic et al. [24], where this algorithm
as used to investigate directed water transport [25]. Nam and
aviany [26] have used network simulations to establish how the
iffusion coefficient depends on the saturation, using a cubic law
or the relative permeability and a J-function for capillary pressure
n the momentum transport equation. Network models reveal [27]
hat both geometrical and capillary properties influence the liq-
id water distribution in the GDL. Experimental evidence [28–30]
hows that liquid water clusters throughout the GDL; thus, water
merges in specific points in the channel area rather than flow con-
inuously across the overall available interface between the GDL
nd the channel. Based on the cluster size, the correlation length of
he liquid water flow can be calculated, where recently it has been
hown [31] that the GDL thickness is smaller than the correlation
ength which limits the use of continuum models.

In this study, co-current flow of two mobile phases is investi-
ated and the impact of variations of flow rates of both phases at
he inlet of the porous medium, of the maximum allowable clus-
er size (correlation length), and of the heterogeneity of the porous

edium are examined. For the limiting case when one of the phases
t the inlet boundary is dominant, the co-current flow reverts to dis-
lacement flow. For the spread of both phases, invasion percolation
ith trapping is used, whereby both phases form static structures

nd momentum transfer between the phases is negligible. The trap-
ing rule is altered so that it can account for the presence of two
obile phases. Furthermore, the invasion percolation algorithm is
odified for variable correlation length, in which the width of the

dvancing interface cannot exceed a predefined correlation length.
he invasion is stopped at the termination point, when all throats
t the outlet boundary are invaded by one of the phases transported
rom the network inlet. Based on the resulting patterns, the rela-
ive permeability of each phase as well as the capillary pressure at
he interface are calculated and the impact of saturation and other
nvestigated parameters is analyzed.

. Model system

A discrete capillary network model for two-phase flow in which
oth phases are mobile is developed. The network consists of
hroats and pores, where the network coordination number rep-
esents the number of pores connected to one pore. For regular,
quare networks, the network coordination number is constant and
qual to four. A schematic of the network and definitions of the
arameters are shown in Fig. 1. In the network, each throat can
nly be occupied by one phase. Both phases enter the network at
he inlet boundary and in order to vary their flow rates, the number
f invading steps of the first (n1) and second phase (n2) is prescribed
e.g. when n1 = 1 and n2 = 2, for each throat invaded by the first
hase, two throats are invaded by second phase). Hence, the occur-

ence frequency is defined as a ratio of invading steps (� = n1/n2),
nd either phase can be dominant compared to the other. The pro-
ess repeats alternatively until there are no more available throats
o occupy; this corresponds to the termination point. Once the
ow paths of the phases are initiated, they branch into the porous
flow parameters are shown: occurrence frequency of the phases at the network
inlet (� = n1/n2), medium heterogeneity (� = rmax/rmin − 1), and the length scale rep-
resenting the cluster size (� = ls/L).

medium and form distinct flow patterns. The irregularity of the
pattern of each phase is caused by local heterogeneities that pro-
duce local variations of permeability (K) and capillary pressure (pc),
which in turn result in local flow rate variations for each phase. The
heterogeneity is determined by the prescription of the throat radii
(rt) using a predefined distribution function. For a uniform distri-
bution of throat radii (rt) with a minimum (rmin) and maximum
(rmax), rmin < rt < rmax, the heterogeneity parameter can be defined
as � = rmax/rmin − 1, and in the limit of a homogeneous sample we
have � = 0. It should be noted that a pore network does not provide
a direct geometric representation of a physical porous medium.
Physical consistency is ensured by selecting a throat radii distri-
bution function such that K and pc in the numerical network are
physically representative of values measured in the actual porous
medium of interest.

Viscous forces influence the length scale for which the parts
of one phase are fully surrounded by the other. The size of the
entrapped phase (cluster) is a measure of the viscous correlation
length. Still, the capillary force controls the phase displacement on
the local level [32]. Therefore, a length scale (ls) is defined that is
smaller or equal to the domain length (L) in the network where
the invasion of phases occurs (note that ls differs from the corre-
lation length). Once some fraction of the throats is invaded over a
length ls, the throats in the next layer of the network of length ls
are allowed to be filled. This is repeated until all layers of length ls
in the network are filled. Hence, for a length scale ls which is equal
to the length of the domain (L), the process is governed by capillary
forces and corresponds to a small capillary number. As the length
scale ls decreases, the filling is increasingly controlled by viscous
forces, which coincides with a larger capillary number. To vary the
length scale ls, the process extent parameter (� = ls/L) is defined and
used (see Fig. 1).

Satisfying the condition that the spread of phases is governed
by capillary forces at the local level, the invasion percolation with
trapping algorithm [21] is used for both phases. Each phase occu-

pies different throats in the network and there is no momentum
transport between them. At the onset, the spread of both phases
starts into a network completely filled by the first phase (originally
present). This first phase, together with the other (second) phase,
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nters the network. As two mobile phases are present, different
ypes of clusters can be formed, and the trapping rules must be

odified. The set of rules for how the phases are allowed to spread
ithin the network are:

(i) for each of the two phases, the carrying backbone is defined as
a flow path that spans the network inlet and outlet,

(ii) the paths of the different phases can intersect within the net-
work,

iii) only clusters of the originally present phase in the network
can be formed, and they are surrounded by either of the two
phases’ preferential flow paths.

he clusters which are surrounded by the originally present (first)
hase flow paths contribute to momentum transport (they are part
f the carrying backbone of the originally present phase) and they
re mobile. In this case, mobile means that the fluid phase is mobile,
ut the corresponding clusters stay in the same position. On the
ther hand, clusters of the first phase which are surrounded by flow
aths of the other (second) phase do not contribute to momentum
ransport, and in these clusters, the first phase is immobile. Clusters
f the second phase cannot form; however, there are still parts of
he second phase that do not belong to the second phase backbone
nd do not contribute to momentum transport. Finally, throats that
elong to the clusters which are formed by first phase flow paths
mobile clusters) can be invaded by the second phase.

Within the network, there are parts of each phase that belong to
ach phase carrying backbone (mobile) and parts that are immo-
ile. Thus, the content of each phase is given as a phase saturation
1 and s2 = 1 − s1, and the immobile parts are defined as immobile
aturations sim,1 and sim,2. Since each throat is occupied by only one
hase, the saturation is a ratio of the volume of throats filled with
particular phase (Vt,i) to the volume of all throats (Vt,all):

i =
∑

jV
j
t,i

Vt,all
, (1)

here the index i refers to the phases (i = 1, 2), and the index j
s a summation index. Similarly, the immobile saturation can be
btained by adding the volumes of throats filled by immobile phase.

In single-phase flow, the network as depicted in Fig. 1 shows
he flow resistance, which is defined as a single phase permeabil-
ty (Ksp) or network permeability, and is calculated from Darcy’s
aw. This permeability is a function of porosity, Ksp = Ksp(�). With
wo phases present, the flow resistance of each phase becomes
arger compared to single-phase flow. For multiphase flow, it is
ssumed again that the phase velocity (ui) and the phase pressure
radient (�pi) are related linearly according to Darcy’s law. The pro-
ortionality constant is phase specific and depends on the phase
ermeability (Ki) and the phase viscosity (�i) (i = 1 or 2). Thus, for
ach phase [33]:

i = − Ki

�i
∇pi, (2)

here the phase permeability (Ki) is a function of porosity (�) and
aturation (s), Ki = Ki(�, s). In order to separate the influence of the
aturation, the relative permeability (kr,i) of each phase (i = 1, 2)
s defined as a ratio of the phase permeability to the single phase
ermeability:

r,i = Ki

K
= Qi

Q
. (3)
sp

s shown in the above relation, given an applied pressure drop
n the network (�p/L), the relative permeability can be obtained
s a ratio of the phase flow rate (Qi) to the single-phase flow rate
hrough the network (Q).
er Sources 196 (2011) 2725–2734 2727

At the interface between two phases, a potential difference
across the interface can be defined. In order for one phase to spread
into another, it is not sufficient to have a potential difference at the
interface, but the difference must also be larger than the threshold
potential. Furthermore, due to heterogeneities of the local medium,
the threshold potential varies both along the interface, as well as
with the motion of the interface during the invasion. In the net-
work, the potential difference is given by the pressure difference
between two connected pores. The threshold potential difference
is the capillary pressure of the connecting throat (pc), calculated
from the Young–Laplace equation:

pc = 2�

rt
, (4)

where � is the surface tension of the originally present phase, and rt

is the radius of the throat. This displacement criterion requires the
solution of the pressure field during invasion. However, in the limit
of very slow processes (capillary force dominated) this criterion
turns into a simpler rule: in a drainage-like process, the throat with
the largest radius will be invaded. For faster flows (viscous force
dominated) the same rule (largest throat radius) for the spread of
phases can be exploited, but the maximum cluster size decreases
as the phase velocity increases (the cluster size is limited using ls).

3. Numerical procedure

A two-dimensional, regular square network of size (nL × nL) is
defined using throats with circular cross-sections and four throats
connected to each pore. Two phases, one of which is the same as
the initial phase, enter the network at the inlet boundary. The out-
let is on the opposite side of the network. There is no flow across
the remaining two network boundaries. Phases enter the network
alternately, and the number of consecutive steps of each phase is
n1 and n2, respectively. If one phase is dominant, it might block
the other phase, preventing it from reaching the network outlet. In
this case, a deficient phase becomes a large stationary cluster in the
network.

Once there are no available throats to be filled, the pressure for
each phase within the network is calculated. It is assumed here that
the phases are in equilibrium. Thus, there is no transport across
the interface (the interface is stationary), and each phase flows
only from the network inlet to the outlet. Only the phase carry-
ing backbone contributes to the momentum transport and to the
phase relative permeability. If one phase does not reach the outlet,
this phase is regarded as a cluster, and a solution of the pressure
is not required. For the phase(s) flowing through the network, the
pressure solution is found by applying a mass balance at each pore
within the network. The balance for one pore (i) is given in the
form of the flow rates through all connected throats (qi,j) and has
the form:

c∑

j=1

qi,j = 0, c = 4, (5)

where c is the flow coordination number. In single-phase flow, the
flow and network coordination numbers are equal. However, in
multiphase flow, the flow coordination number is defined for pores
that belong to the phase carrying backbone. In general, c varies
throughout the backbone, where for any pore, one or more throats
can be occupied with another phase. The flow rate (qi,j) through

each throat (j = 1, . . ., c) is calculated from its conductance (gj) and
the pressure difference (�p) at the starting and ending pore of the
throat as:

qi,j = gj�p. (6)



2728 B. Markicevic, N. Djilali / Journal of Pow

F
t

q

w
i

a
c
t
a
(
a
c

w
r
t
d
(
p
w

A

w
(
o
c
t

w
b
r
t
o
t
r

Q

w
F

Fig. 2. Network node with one pore and connecting throats.

or a circular throat of radius (rt,j) and length (lt), the exact value of
he conductance is obtained from the Poiseuille solution:

j =
	r4

t,j

(8�lt)
, (7)

here � is the viscosity of the phase for which the pressure solution
s solved (�1 /= �2).

Applying the balance equation to each pore, Eq. (5) can be
ssembled over the whole network (single phase flow) or phase
arrying backbone. Fig. 2 shows a pore (i, j) and four connecting
hroats: (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). Both horizontal (H)
nd vertical (V) throats can be previous (pre) or next (nex) to the pore
i, j). Since the direction of the flow for each throat is not known
priori, all (qj) are defined as the flow into pore (i, j). Using this

onvention and Eq. (5), the mass balance for pore (i, j), obeys:

gH
prep−10 + gH

nexp+10 + qH
prep−01 + gV

nexp+01

−(gH
pre + gH

nex + qH
pre + gV

nex)p00 = 0, (8)

here the subscripts for pressure (p) and conductance (g) are in
eference to Fig. 2. In multiphase flow, the throats that do not belong
o the carrying backbone of the current phase are omitted, as they
o not contribute to the balance of the current phase. Applying Eq.
8) to each pore yields a linear system of algebraic equations for the
ressure (p) over the network/carrying backbone. Hence, one can
rite:

ipi = bi, (9)

ith index i referring to the single phase (i = sp) or multiphase flow
phases, i = 1, 2). The matrix (Ai) is obtained from the conductances
f throats, whereas the force vector (bi) depends on both throat
onductances and the external pressure at the inlet and outlet of
he network.

Eq. (9) is solved once for single-phase flow over the whole net-
ork and twice for the two phases over corresponding carrying

ackbones. Having determined the pressure distribution, the flow
ate is calculated by summing the flow rates through the throats at
he inlet or the outlet boundary. Once an equilibrium distribution
f phases in the network is achieved, mass conservation requires
hat the flow rate of each phase into the network equals the flow
ate out of the network. For phase i, the flow rate at the inlet is:
inlet
i =

∑

m

gm(pinl − pm), (10)

here m is a summation index for all throats occupied by phase i.
rom the single-phase flow rate (Qsp), the network or single-phase
er Sources 196 (2011) 2725–2734

permeability (Ksp) can be computed from Darcy’s law. Similarly,
both phase permeabilities (Ki) are obtained from known phase flow
rates (Qi). The relative permeabilities are then calculated from Eq.
(3). The flow through the network is two-dimensional, whereas
all permeabilities are calculated for, in-principle, one-dimensional
flow. Therefore, for a fluid of viscosity (�):

K = �
Q

A

L

�p
, (11)

where K and Q are used for either single phase (sp) or multiphase
flow (i). The pressure drop in the network is (pin − pout)/L and u = Q/A
is the superficial velocity. Finally, the capillary pressure (pc) is found
by averaging the local capillary pressures (Eq. (3)) over the entire
static interface in the spread termination point.

4. Results and discussion

The numerical results are obtained for a regular square network
(nL × nL) of size nL = 60. The cylindrical throats have dimensions
(rt, lt), where the throat length lt = 2 × 10−4 m. The heterogene-
ity parameter (�), the occurrence frequency (� = n1/n2), and the
process extent (� = ls/L) are altered in order to vary the regimes
and obtain a broad range of phase distributions within the net-
work. Local heterogeneities are included by setting the throat
radius as a random variable. In this study, the radii are uni-
formly distributed in the range (rmin, rmax) with an average radius
rav = 4 × 10−4 m. The minimum (rmin) and maximum (rmax) radii are
set to (rmin, rmax) × 10−4 m = {(3.5, 4.5), (2.0, 6.0), (0.5, 7.5)}, with a
corresponding heterogeneity parameter (� = rmax/rmin − 1) equal to
� = {0.3, 2, 14} ranging from almost homogeneous to highly het-
erogeneous media. Either phase – water or air – can be in excess or
deficient compared to the other phase, and therefore, seven distinct
values of � are used, � = {0.1, 0.25, 0.5, 1, 2, 4, 10}. The maximum dis-
tance (ls) between two throats that are filled successively is initially
set equal to the network length (L) which corresponds to capil-
lary force controlled regime. This distance is gradually decreased
to ls/L = 1/20 for fast water transport corresponding to the viscous
force controlled regime; thus � = {1, 1/3, 1/10, 1/20}. Overall (�, �,
�) = (7 × 3 × 4) = 84 different combinations of parameters are inves-
tigated. Finally, for each combination (�, �, �), the throat radii (rt)
are randomly generated N = 20 times, and the results of all realiza-
tions are used to obtain statistical averages.

Once the distribution of the phases is obtained, the saturation is
calculated from Eq. (1) by summing the volumes of throats occupied
by each phase. Similarly, the immobile saturation of each phase is
found, but only for the throats in which flow rate is equal to zero.
The capillary pressure is calculated at the phase interfaces. As the
spread of both phases is locally governed by capillary forces, pc is
found by averaging the capillary condition (Eq. (4)) at the interfaces.
The single-phase, and the phase permeabilities are found from the
phase flow rates across the boundary (Eq. (10)) and Darcy’s law (Eq.
(11)).

4.1. Initial analysis

A typical solution containing the distribution of the two phases
is shown in Fig. 3(a); the originally present phase (first phase) is
shown with gray lines, whereas the second phase is depicted by
black lines. The carrying backbones of both phases are shown in
Fig. 3(b). In this case, the numbers of invading steps are equal (n1 = 1
and n2 = 1) and occurrence frequency, � is equal to one. The length

scale (ls) is equal to the length of domain (L), and � = ls/L = 1. As inva-
sion percolation with trapping is used for the distribution of phases,
the heterogeneity parameter (�) does not influence the spread of
phases. The next throat to be invaded has to be the largest among
all available throats. As can be observed from Fig. 3, the distribu-
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Fig. 3. Two mobile phases invasion of a capillary network: (a) distribution of phases
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(� = n1/n2), and can be expressed as s1 = �/(� + 1) and s2 = 1/(� + 1).
n the termination point; (b) phase carrying backbones. The originally present (first)
hase and the second phase are represented by gray and black lines, respectively.
he inlet is at the top of network.

ion of the two phases is asymmetric. Although � = 1 and one would
xpect equal saturations of each phase (s1 = s2 = 0.5), the saturation
f the originally present phase is larger (in this realization s1 ≈ 0.55
nd s2 ≈ 0.45). This difference is caused by the formation of clus-
ers, as the second phase cannot spread into the immobile clusters
f the first phase and one obtains s1 > �/(� + 1) and s2 < 1/(� + 1).
he throats associated with the immobile first phase consist of:
a) throats surrounded by the flow path of the second phase, and
b) paths of the first phase that are not part of the carrying back-
one. On the other hand, the throats associated with the immobile
econd phase belong to the second phase paths only, but not to
he second phase carrying backbones; hence sim,1 > sim,2. This is
elated to the momentum transport associated with the first phase
mobile) clusters. These are formed as parts of the first phase, which
re surrounded by preferential flow paths of the same phase (see
ig. 3(b)). The mobile regions have low flow resistances which cause
wo relative permeabilities to differ (kr,1 > kr,2).

Once the capillary number increases, the fluid spread is more
ocalized and only throats which are within a distance of ls may be
lled in two consecutive steps. This stabilizes the fluid front and

he flow becomes dominated by viscous forces. As a result of flow
tabilization, smaller clusters are formed. Fig. 4 shows the filling
f the network for � = ls/L = 1/3 after the first (Fig. 4(a)), and the
econd (Fig. 4(b)) layer of the network is filled. However, changes
Fig. 4. The invasion percolation with defined cluster size and trapping for the maxi-
mum cluster size equal to one third of the network size: (a) after filling of first third;
(b) after filling of second third.

in ls do not only alter the cluster size, but also cause segregation
of the phases. This segregation allows two processes to occur: (i)
channeling of phases and (ii) no-percolation of the deficient phase.
The first process is promoted by decreasing ls and the latter one is
observed for large values of ls. In order to quantify the percolation
of the phase, the dimensionless fluid front position is defined as a
ratio of the furthest fluid point from the inlet (lfront) to the length
of the network (L):


i = lfront

L
. (12)

Thus, the phase percolation occurs once 
i = 1, and the condition of
no-percolation corresponds to 
i < 1. It can readily be seen that for
the phase that does not percolate, the phase saturation (si) is equal
to the immobile phase saturation (sim,i), and the relative phase per-
meability is equal to zero.

In an ideal case, for multiphase parallel flow in which clusters
do not form, saturation is proportional to the occurrence frequency
This condition is satisfied for very low (�), which corresponds to
the flow dominated by viscous forces. Otherwise, as � increases,
the influence of capillarity becomes significant, and we obtain
s1 > �/(� + 1) and s2 < 1/(� + 1). This is shown in Fig. 5(a), where the
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Fig. 5. Estimation of the second phase maximum saturation (smax,2) for different
heterogeneity and process extent (�, �): (a) extrapolation for � = 0.3 and all � inves-
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cal results, and lines – power law). The values of the exponent
igated with dash line limit s2 = 1/(1 + �), and (b) power law dependence of smax,2 as
function of the cluster size.

lots s2 vs. 1/(1 + �) for constant heterogeneity � = 2, and for var-
ous � = ls/L are depicted. The dashed line represents s2 = 1/(1 + �),
nd it can be observed that the actual value of s2 is lower than the
imiting value 1/(1 + �). However, as the heterogeneity increases,
2 approaches 1/(1 + �) as the throats that are filled are larger and
ontribute the most to the medium volume. The second phase sat-
ration is extrapolated as � tends to zero and 1/(1 + �) goes to the

ntrinsic saturation value. This saturation is referred to as the max-
mum achievable saturation (smax,2) of the second phase; smax,2
epends on � and �, and the results are depicted in Fig. 5(b). In
ig. 5(b), the symbols represent the numerical results, and the solid
ines represent the power law fits:

max,2 = A��−˛. (13)

he results yield exponents in the range ˛ ≈ 0.17–0.2, with
decreasing with �. The existence of the maximum sat-

ration of the second phase (smax,2) suggests that there is
n additional property of two-phase flow: the content of the origi-
ally present phase that cannot be displaced from the network even
hen the second phase is dominant (in this case � is very small).

his retention of the first phase is caused by its immobile clusters,
round which the second phase flows. The amount of the phase that
annot be displaced can be quantified as an irreducible saturation
sir,1) of the first phase. The value of sir,1 is related to smax,2, and the
rreducible saturation of the originally present phase (first phase)
s:

ir,1 = 1 − smax,2, (14)
here smax,2 is estimated from the dependence s2 and � as shown
n Fig. 5(a).
er Sources 196 (2011) 2725–2734

4.2. Single (kr,i–s–pc) and (
i–s) curves

In order to assess how the relative permeabilities (kr,i), capil-
lary pressure (pc), and fluid fronts (
i) of each phase change as a
function of saturation (si), simulations were performed with con-
stant values for � and �, and by varying � = n1/n2. For each value
of �, the distribution of throat radii (rt) is generated randomly
(N = 20) to obtain stochastic averages. Hence, 140 discrete points (�,
N) = (7 × 20) were used to generate (kr,i–si–pc) and (
i–si) curves.
The relative permeability kr,1 is equal to the permeability ratio
K1/Ksp, where the phase permeability (K1) is found using the gen-
eralized Darcy’s law (Eq. (11)) from the known pressure drop, and
calculating the phase flow rate at the network flow boundary (inlet
or outlet, Eq. (10)). The second phase relative permeability (kr,2)
is determined in the same manner. The saturation of the origi-
nally present phase (first phase, s1), and the immobile saturations
(sim,1) and (sim,2) are computed from the whole network. The cap-
illary pressure is averaged at the interface between the second
phase carrying backbone and the remaining part of the network.
The results for kr,1, pc, and 
1 for � = 1 and � = 14 are shown in
Fig. 6(a)–(c). The circles represent the discrete realizations, and the
bold squares show the averages for each value of �. The standard
deviations are also shown (error bars) in the figure, with the hor-
izontal error bars representing the saturation deviation. It can be
seen from Fig. 6(a) that for some random network corresponding
to a small value of � (the second phase is dominant), the relative
permeability kr,1 is equal to zero (i.e. there is no percolation of the
first phase). As � increases, the first phase percolates, and s1 and
kr,1 increase. Therefore, as long as kr,1 = 0, the fluid front (
1) is less
than one. The effect of s1 on the fluid front is shown in Fig. 6(c). As
s1 increases, the first phase protrudes more into the network and

1 increases and eventually becomes equal to one. Remarkably,
Fig. 6(b) exhibits a relatively constant capillary pressure irrespec-
tive of saturation. This implies that for specified values of � and �,
the distribution of throat sizes at the interface remains constant
regardless of changes of the flow patterns and interface shapes
with s1.

A power law is usually used to correlate the relative perme-
ability (kr,i) and the saturation (si) in a form kr,i = Bsi

ˇ. Such a
comparison for a heterogeneity (� = 14) and all four investigated
� is given in Fig. 7(a) and (b). In Fig. 7, the symbols represent aver-
aged numerical results, and the solid � = 1/20 and dash-dot � = 1
lines are the lower and upper power law approximations. For the
originally present phase (first phase), the value of the exponent
(ˇ) decreases from ˇ = 2.8 to ˇ = 1.7 as � decreases from � = 1 to
� = 1/20 (this corresponds to an increase of the capillary number).
Similarly, for the second phase, the power decreases from ˇ = 1.4
to ˇ = 1.3 with decreasing �. On the other hand, ˇ is much less sen-
sitive to variations in �, and remains almost constant for distinct �
(a change in ˇ around 0.1–0.2 for both permeabilities – results are
not shown here). Furthermore, the parameter (B), which accounts
for the irreducible saturation of the first phase, approaches unity as
� decreases. From the fact that kr,i = 0 for a phase (i) which does not
percolate, kr,i should be correlated as a function of (si − sim,i) in order
to obtain kr,i(si − sim,i = 0) = 0. Hence, the following relationship is
used:

kr,i = Bk(si − sim,i)
ˇk , (15)

where Bk and ˇk are again parameters to be estimated, and where
they are influenced by � and �. The shift in the (kr,i–si) curves from
Fig. 7 to account for sim,i is shown in Fig. 8 (symbols – numeri-
(ˇk) decrease compared to ˇ and range from 1.3 to 1.8 for the
first phase, while remaining essentially constant for the second
phase ˇk ≈ 1.2. The relative permeability does not, however, fol-
low the power law over the entire range of saturation differences
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Fig. 6. Possible values of (a) first phase relative permeability (kr,1), (b) capillary
pressure (pc), and (c) first phase fluid front (
1) for network random realizations
over entire range of saturations. These are given with open circles; averages are
s
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Fig. 7. Relative permeability as a function of phase saturation for different cluster
size (symbols): (a) first phase; (b) second phase. The lower and upper power law
limits are plotted with dash-dot and solid lines, respectively.
hown with bold squares and corresponding standard deviations with error bars
horizontal for saturation).

si − sim,i), as can be seen from the inset log–log plot in Fig. 8(a).
or small saturation differences, kr,1 deviates from the power law
stimated for higher saturation differences. As for B, the values of
k are close to one in all cases, except for the second phase and
≈ 1, suggesting again that for unstable flows the originally present
hase (the first phase), cannot be completely displaced, and hence
ir,1 > 0.

.3. Influence of � and �

In order to determine how the (kr,i–s–pc) and (
i–s) curves
hange with heterogeneity (�) and the cluster size length scale (ls)

process extent, � = ls/L), the numerical results for all investigated
airs (�, �) are averaged (as shown in Figs. 6(a)–(c) for � = 2 and
= 1). The relative permeability (kr,i) is a phase permeability (Ki)

i = 1, 2) normalized with respect to the single-phase permeability
Ksp). Both Ki and Ksp are influenced by �. The single-phase perme-

Fig. 8. Relative permeability as a function of phase saturation shifted for a phase
immobile saturation, and lower (dash-dot) and upper (solid line) power law approx-
imation: (a) first phase; (b) second phase. Distinct cluster sizes (�) are represented
by different symbols.
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may be purely caused by the larger radii of the second phase flow
ig. 9. Influence of cluster size (�) on (a) relative permeabilities, (b) capillary pres-
ure, and (c) fluid fronts. In part (c), the saturation range for which both phases
ercolate is given with �s.

bility decreases as the medium heterogeneity increases, whereas
or a drainage like process, where the largest throats are occupied,
i increases with �. There is no influence of � on Ksp, but Ki depends
n � and thus, so does kr,i. Conversely, the capillary pressure should
e a strong function of the porous medium heterogeneity (Eq. (4))
nd of the process extent. Both parameters change the throat size
istribution at the interface. For larger �, the influence of small
hroats is larger and pc increases; for larger �, the phases are less
egregated and the throat radii at the interface are shifted toward
arger values, and hence, to smaller pc. The fluid fronts and no-
ercolation regime are strongly influenced by � and to a lesser

egree by �.

Fig. 9 shows how all five parameters change with saturation
nd � for constant � = 2. The originally present phase (first phase)
nd the second phase are depicted by solid and dash-dot lines,
er Sources 196 (2011) 2725–2734

respectively. Different symbols are used for distinct values of �.
When kr,i = 0 for phase (i), there is no percolation, the immobile
part of the phase does not contribute to the momentum transport,
and the relative permeabilities are given as a function of (si − sim,i)
(Fig. 9(a)). As can be observed from Fig. 9(a), there are large dif-
ferences between the two relative permeabilities kr,1 and kr,2 as
function of the cluster size (ls) (parameter �). Both relative per-
meabilities increase as � decreases, because the flow stabilization
causes the clusters to become smaller. Hence, a larger part of the
porous medium is available to the flow, resulting in an increases in
kr,i. This increase is more prominent for the second phase, whereas
regardless of �, kr,1 increases only slightly (the mobile clusters of the
first phase are always present). The two permeabilities, kr,1 and kr,2
are not symmetric, with kr,2 having maximum values smaller than
one. This is due to the fact that the second phase mobile clusters do
not exist, and the second phase meanders throughout the network
around large clusters of the first phase (mobile or immobile). How-
ever, as � decreases and the phases segregate, both phases behave
like the single phase, and the relative permeability is influenced
by the porous medium volume occupied by that phase. Both rel-
ative permeabilities become more symmetric, and change almost
linearly with si.

The changes of the capillary pressure (pc) with � are largely influ-
enced by the heterogeneity parameter (�). Thus, for a network that
is close to homogeneous (all throats have similar sizes), the capil-
lary pressure is constant with �. For a heterogeneous network, as
the preferably filled throats and the interface shape change with
�, a variation in pc is observed as shown in Fig. 9(b) for four dif-
ferent values of �. The capillary pressure increases as � decreases,
where the throats with smaller radii become part of the interface
for smaller �. Furthermore, and as observed earlier, the capillary
pressure (pc) does not change with saturation when � is held con-
stant. In the latter case, the only change that occurs with varying
saturation (s) is the interface shape, but the average radius of the
interfacial throats remains constant. For small �, the effects of phase
channeling are observed. Both phases percolate, and the fluid front
positions are 
i = 1. As � increases, the fluid flow becomes unsta-
ble and one phase can be blocked by the other. The deficient phase
therefore does not reach the outlet, 
i < 1. Fig. 9(c) shows the fluid
front positions (
i) where, for distinct �, different saturation widths
(�s) are obtained for which both phases percolate. In general, �s
increases as � decreases.

It is instructive to examine how the porous medium hetero-
geneities (�) influence (kr,i–s–pc) and (
i–s) curves, and these
results are shown in Fig. 10(a)–(c) (for kr,i, pc, and 
i, respectively).
Again, as in Fig. 9, the first phase is plotted with solid lines, and
the second phase with dash-dot lines. Different symbols are used
for three values of �, with the length scale held constant � = 1. The
capillary pressure is a strong function of �. On the other hand, a
comparison between kr,1 and kr,2 reveals that kr,1 is a weaker func-
tion of �, whereas kr,2 increases twofold as � changes from � = 0.3
to � = 14. For the first phase, this fact might be attributed to the
mobile clusters of the first phase (originally present phase), where
the clusters are sufficiently large that they represent the momen-
tum transport hindrance caused by heterogeneities (�) in the same
manner as the overall network. Thus, one does not observe changes
of kr,1 with �; this is corroborated with percolation results for the
fluid front (
1) (solid lines in Fig. 10(c)). No noticeable changes of

1 with s1 for different � are observed, and the first phase volume
follows the increase of the volume of the overall network. There-
fore s2 = 1 − s1 is also not influenced by �, and the increase in kr,2
paths with increasing �. The influence of � on the capillary pres-
sure is more pronounced than on kr,i and 
i. As � increases, some
parts of the interface will have smaller throat radii with larger capil-
lary pressures. Finally, pc does not depend on saturation for a given
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Fig. 10. Variation of (a) relative permeability, (b) capillary pressure, and (c) fluid
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Fig. 11. Displacement flow relative permeability (kdis,2): (a) variation with � and �
and power law approximations; (b) envelope (k –s ) and the saturation power
ronts with medium heterogeneity (�) for large clusters, � = 1. The second phase
elative permeability, kr,2 is for an order of magnitude lower than kr,1 due to the
obile clusters of the first phase.

, as interface radii average to the same values regardless of the
aturation.

.3.1. Displacement flow
In the limit when � = n1/n2 becomes small (the second phase is

ominant) and approaches zero, the parallel flow becomes a dis-
lacement flow. Here, the second phase is mobile, whereas the
riginally present phase (first phase) is distributed in the network
s immobile clusters. For this case, the second and first phase sat-

rations are referred to as the maximum saturation (smax,2) and

rreducible saturation (sir,1), respectively. The saturation smax,2 is
ound by extrapolating data from Fig. 5(a). Similarly, the relative
ermeability of the displacement flow (kdis,2) is obtained by extrap-
lating from the (kr,2 ∼ s2) dependence in the limit of s2 approaching
dis,2 max,2

laws. The saturation power laws differ from one obtained for two mobile phases
flow.

unity. Thus, kdis,2 becomes an intrinsic value of kr,2. The perme-
ability kdis,2 is a function of both � and �, where it is assumed
kdis,2 = Bs�−ˇs and Bs and ˇs are parameters that depend on �. The
results of such a comparison are shown in Fig. 11(a) with extrapo-
lated kdis,2 given by the symbols connected with dashed lines, and
the power law approximation is shown with solid lines. Both smax,2
and the permeability kdis,2 increase with �. Here, Bs and ˇs depend
on �, and ˇs decreases as � increases. The parameter ˇs is found to
be in the range of 0.7–0.8.

The saturation (smax,2) can be interpreted as an equilibrium sat-
uration of the displacing phase. This saturation depends on � and
� (Fig. 5(b)), and in order to obtain (kdis,2–smax,2) curves, the satura-
tion results shown in Fig. 5(a) are correlated with the permeability
data in Fig. 11(a). The results are presented in Fig. 11(b), where the
numerical points (smax,2, kdis,2) are depicted with square symbols,
and power law fits are shown with solid lines for constant � with
power ˇ�, and dash-dot lines for constant � with power ˇ� . In dis-
placement flow, ˇ� is found to vary in the range of 1.1–2.2, whereas
the influence of the cluster size � on the power ˇ� is much higher,
and ˇ� = 4 for all �. The values of the exponents imply that � has
a larger influence than � on the relative permeability; the same
trend was observed in the flow of two mobile phases. It should be
noted here that the exponents ˇ and ˇk (see Eq. (15)), estimated
for the second phase for flow of two mobile phases and constant �,
correspond to the power ˇ�. However, ˇ� is larger than ˇ or ˇk, sug-
gesting that different mechanisms influence the displacement and
flow of two mobile phases. The same relative permeability depen-
dence cannot be used in both types of flow. This distinction does
not apply to the capillary pressure, as pc does not change with sat-

uration in the flow of two mobile phases. The envelope for pc is
therefore a function of � and � as shown in Fig. 12, but not of the
flow type.
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Fig. 12. Changes of the capillary pressure (a) as a function of medium heterogeneity
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�) and cluster size (�), and (b) construction of (pc–sir,1) envelope for displacement
ows, where sir,1 is irreducible saturation of the originally present phase. The enve-

ope remains the same in two mobile phases flow as pc is constant with s1 (see e.g.
igs. 9(b) and 10(b)).

. Conclusions

Two-phase flow, in which both phases are mobile and flow
o-currently, has been investigated using an extended discrete
ore network methodology. Functional changes in relative per-
eabilities, capillary pressure, and fluid fronts, as a function of

hase saturation, have been predicted for conditions correspond-
ng to a PEMFC gas diffusion layer. Two additional parameters
ave also been varied: the network heterogeneity and the process
xtent, which is a measure of the maximum allowed cluster size.
t was found that the relative permeabilities follow a power law
f saturation, with the permeability of the originally present phase
xhibiting a higher sensitivity to saturation changes than the other
hase. When the immobile phase saturation is accounted for by
xpressing the results in terms of the reduced phase saturation,

maller exponents are obtained. The numerical results suggest that
he cluster size influences the exponent much more than the het-
rogeneity of the porous medium. For a defined porous medium
nd maximum cluster size, the capillary pressure does not change
ith the saturation, but it is found to vary significantly with the

[

[
[
[
[
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heterogeneity of the medium and the cluster size. For conditions
that favor small throats at the interface, the capillary pressure
increases. This is true for highly heterogeneous media and small
clusters. The cluster size influences the percolation of the phases,
and for small clusters the phase channeling occurs. For smaller clus-
ters, range of phase saturations for which both phases percolate
becomes broader.

Displacement flow is a limiting case of parallel flow, where the
originally present phase in the network is highly deficient at the
network inlet. Since the numerical simulations cover a wide range
of saturations, parallel flow data was extrapolated for the origi-
nally present phase deficient at the inlet (second phase dominant).
Relative permeability and capillary pressure curves were deduced
from the extrapolation. The relative permeability is specific to the
flow type and needs to be determined for each flow type (parallel or
displacement). In displacement flow, relative permeability also fol-
lows a power law relationship, but the exponents are much higher
than for parallel flow. The capillary curves, on the other hand, do
not depend on the flow type.

References

[1] A.G. Yiotis, A.K. Stubos, A.G. Boudouvis, Y.C. Yortsos, Adv. Water Resour. 24
(2001) 439–460.

[2] J.H. Nam, K.J. Lee, G.S. Hwang, C.J. Kim, M. Kaviany, Int. J. Heat Mass Transfer 52
(2009) 2779–2791.

[3] N.C. Reis Jr., R.F. Griffiths, M.D. Mantle, L.F. Gladden, Int. J. Heat Mass Transfer
46 (2003) 1279–1292.

[4] T. Berning, N. Djilali, J. Electrochem. Soc. 150 (2003) A1589–A1598.
[5] N. Djilali, Energy 32 (2007) 269–280.
[6] M.C. Leverett, AIME Trans. 142 (1941) 152–169.
[7] K.S. Udell, Int. J. Heat Mass Transfer 28 (1985) 485–495.
[8] R.H. Brooks, A.T. Corey, Hydrol. Papers 3 (1964) 1–27.
[9] M.T. van Genuchten, Soil Sci. Soc. Am. J. 44 (1980) 892–898.
10] J.T. Gostick, M.W. Fowler, M.A. Ioannidis, M.D. Pritzker, Y.M. Volfkovich, A.

Sakars, J. Power Sources 156 (2006) 375–387.
11] E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154 (2007)

B1295–B1304.
12] M.S. Valavanides, A.C. Payatakes, Adv. Water Resour. 24 (2001) 385–407.
13] B. Markicevic, N. Djilali, Phys. Fluids 18 (2006) 033101.
14] M.R. Rasaei, M. Sahimi, Comput. Geosci. 13 (2009) 187–214.
15] C.A. Aggelopoulos, C.D. Tsakiroglou, Geoderma 148 (2008) 25–34.
16] I. Fatt, Trans. AIME 207 (1956) 164–181.
17] R. Lenormand, E. Touboul, C. Zarcone, J. Fluid Mech. 189 (1988) 165–187.
18] D. Or, Adv. Water Resour. 31 (2008) 1129–1136.
19] M. Prat, Int. J. Multiphase Flow 19 (1993) 691–704.
20] R. Lenormand, C. Zarcone, Phys. Rev. Lett. 54 (1985) 2226–2229.
21] D. Wilkinson, J.F. Willemsen, J. Phys. A 16 (1983) 3365–3376.
22] G.N. Constantinides, A.C. Payatakes, AIChE J. 42 (1996) 369–382.
23] J.T. Gostick, M.W. Fowler, M.D. Pritzker, M.A. Ioannidis, L.M. Behra, J. Power

Sources 162 (2006) 228–238.
24] B. Markicevic, A. Bazylak, N. Djilali, J. Power Sources 163 (2007) 706–717.
25] A. Bazylak, V. Berejnov, B. Markicevic, D. Sinton, N. Djilali, Electrochim. Acta 53

(2008) 7630–7637.
26] J.H. Nam, M. Kaviany, Int. J. Heat Mass Transfer 46 (2003) 4595–4611.
27] K.J. Lee, J.H. Nam, C.J. Kim, Electrochim. Acta 54 (2009) 1166–1176.
28] K. Tüber, D. Pocza, C. Hebling, J. Power Sources 124 (2003) 403–414.

29] N. Pekula, K. Heller, P.A. Chuang, A. Turhan, M.M. Mench, J.S. Brenizer, K. Ünlü,

Nucl. Instrum. Methods Phys. 542 (2005) 134–141.
30] S. Litster, D. Sinton, N. Djilali, J. Power Sources 154 (2006) 95–105.
31] M. Rebai, M. Prat, J. Power Sources 192 (2009) 534–543.
32] M. Blunt, M.J. King, H. Scher, Phys. Rev. A 46 (1992) 7680–7699.
33] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, Inc., 1988.


	Analysis of liquid water transport in fuel cell gas diffusion media using two-mobile phase pore network simulations
	Introduction
	Model system
	Numerical procedure
	Results and discussion
	Initial analysis
	Single (kr,i–s–pc) and (λi–s) curves
	Influence of χ and ζ
	Displacement flow


	Conclusions
	References


